We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_beta.html
In the following, let \(X\) be a Beta random variable with parameters
shape1 = \(\alpha\) and shape2 = \(\beta\).
Support: \(x \in [0, 1]\)
Mean: \(\frac{\alpha}{\alpha + \beta}\)
Variance: \(\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}\)
Probability density function (p.d.f):
$$
f(x) = \frac{x^{\alpha - 1}(1-x)^{\beta - 1}}{B(\alpha, \beta)} =
\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1}(1-x)^{\beta - 1}
$$
where \(B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}\)
is the Beta function.
Cumulative distribution function (c.d.f):
$$
F(x) = I_x(alpha, beta) = \frac{B(x; \alpha, \beta)}{B(\alpha, \beta)}
$$
where \(I_x(\alpha, \beta)\) is the regularized incomplete beta function and
\(B(x; \alpha, \beta) = \int_0^x t^{\alpha-1}(1-t)^{\beta-1} dt\).
Moment generating function (m.g.f):
The moment generating function does not have a simple closed form, but the
moments can be calculated as:
$$
E(X^k) = \prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r}
$$