We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_burr.html
In the following, let \(X\) be a Burr random variable with parameters
shape1 = \(\alpha\), shape2 = \(\gamma\), and rate = \(\lambda\).
Support: \(x \in (0, \infty)\)
Mean: \(\frac{\lambda^{-1/\alpha} \gamma B(\gamma - 1/\alpha, 1 + 1/\alpha)}{\gamma}\) (for \(\alpha \gamma > 1\))
Variance: \(\frac{\lambda^{-2/\alpha} \gamma B(\gamma - 2/\alpha, 1 + 2/\alpha)}{\gamma} - \mu^2\) (for \(\alpha \gamma > 2\))
Probability density function (p.d.f):
$$
f(x) = \alpha \gamma \lambda x^{\alpha - 1} (1 + \lambda x^\alpha)^{-\gamma - 1}
$$
Cumulative distribution function (c.d.f):
$$
F(x) = 1 - (1 + \lambda x^\alpha)^{-\gamma}
$$
Quantile function:
$$
F^{-1}(p) = \lambda^{-1/\alpha} ((1 - p)^{-1/\gamma} - 1)^{1/\alpha}
$$
Moment generating function (m.g.f):
Does not exist in closed form.