We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_hypergeometric.html
In the following, let \(X\) be a HyperGeometric random variable with
success probability p = \(p = m/(m+n)\).
Support: \(x \in \{\max(0, k-n), \dots, \min(k,m)\}\)
Mean: \(\frac{km}{m+n} = kp\)
Variance: \(\frac{kmn(m+n-k)}{(m+n)^2 (m+n-1)} =
kp(1-p)\left(1 - \frac{k-1}{m+n-1}\right)\)
Probability mass function (p.m.f):
$$
P(X = x) = \frac{{m \choose x}{n \choose k-x}}{{m+n \choose k}}
$$
Cumulative distribution function (c.d.f):
$$
P(X \le x) = \sum_{i = \max(0, k-n)}^{\lfloor x \rfloor}
\frac{{m \choose i}{n \choose k-i}}{{m+n \choose k}}
$$
Moment generating function (m.g.f):
$$
E(e^{tX}) = \frac{{m \choose k}}{{m+n \choose k}}{}_2F_1(-m, -k; m+n-k+1; e^t)
$$
where \(_2F_1\) is the hypergeometric function.
Skewness:
$$
\frac{(m+n-2k)(m+n-1)^{1/2}(m+n-2n)}{[kmn(m+n-k)]^{1/2}(m+n-2)}
$$