We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_inverse_gamma.html
In the following, let \(X\) be an Inverse Gamma random variable with
shape parameter shape = \(\alpha\) and rate parameter
rate = \(\beta\) (equivalently, scale = \(1/\beta\)).
Support: \(x \in (0, \infty)\)
Mean: \(\frac{\beta}{\alpha - 1}\) for \(\alpha > 1\),
otherwise undefined
Variance: \(\frac{\beta^2}{(\alpha - 1)^2 (\alpha - 2)}\)
for \(\alpha > 2\), otherwise undefined
Probability density function (p.d.f):
$$
f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha - 1}
e^{-\beta/x}
$$
Cumulative distribution function (c.d.f):
$$
F(x) = \frac{\Gamma(\alpha, \beta/x)}{\Gamma(\alpha)} =
Q(\alpha, \beta/x)
$$
where \(\Gamma(\alpha, z)\) is the upper incomplete gamma function and
\(Q\) is the regularized incomplete gamma function.
Moment generating function (m.g.f):
$$
M_X(t) = \frac{2 (-\beta t)^{\alpha/2}}{\Gamma(\alpha)}
K_\alpha\left(\sqrt{-4\beta t}\right)
$$
for \(t < 0\), where \(K_\alpha\) is the modified Bessel function
of the second kind. The MGF does not exist for \(t \ge 0\).