We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_laplace.html
In the following, let \(X\) be a Laplace random variable with location
parameter mu = \(\mu\) and scale parameter sigma = \(\sigma\).
Support: \(R\), the set of all real numbers
Mean: \(\mu\)
Variance: \(2\sigma^2\)
Probability density function (p.d.f):
$$
f(x) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \mu|}{\sigma}\right)
$$
Cumulative distribution function (c.d.f):
$$
F(x) = \begin{cases}
\frac{1}{2} \exp\left(\frac{x - \mu}{\sigma}\right) & \text{if } x < \mu \\
1 - \frac{1}{2} \exp\left(-\frac{x - \mu}{\sigma}\right) & \text{if } x \geq \mu
\end{cases}
$$
Moment generating function (m.g.f):
$$
E(e^{tX}) = \frac{\exp(\mu t)}{1 - \sigma^2 t^2} \text{ for } |t| < \frac{1}{\sigma}
$$