We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_multivariate_normal.html
In the following, let \(\mathbf{X}\) be a \(k\)-dimensional multivariate
normal random variable with mean vector mu = \(\boldsymbol{\mu}\) and
variance-covariance matrix sigma = \(\boldsymbol{\Sigma}\).
Support: \(\mathbf{x} \in \mathbb{R}^k\)
Mean: \(\boldsymbol{\mu}\)
Variance-covariance matrix: \(\boldsymbol{\Sigma}\)
Probability density function (p.d.f):
$$
f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}}
\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T
\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)
$$
where \(|\boldsymbol{\Sigma}|\) is the determinant of
\(\boldsymbol{\Sigma}\).
Cumulative distribution function (c.d.f):
$$
P(\mathbf{X} \le \mathbf{q}) = P(X_1 \le q_1, \ldots, X_k \le q_k)
$$
The c.d.f. does not have a closed-form expression and is computed numerically.
Moment generating function (m.g.f):
$$
M(\mathbf{t}) = E(e^{\mathbf{t}^T \mathbf{X}}) =
\exp\left(\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2}\mathbf{t}^T
\boldsymbol{\Sigma} \mathbf{t}\right)
$$