We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_pareto.html
In the following, let \(X\) be a Pareto random variable with parameters
shape = \(\alpha\) and scale = \(\theta\).
Support: \((0, \infty)\)
Mean: \(\frac{\theta}{\alpha - 1}\) for \(\alpha > 1\),
undefined otherwise
Variance: \(\frac{\alpha\theta^2}{(\alpha - 1)^2(\alpha - 2)}\)
for \(\alpha > 2\), undefined otherwise
Probability density function (p.d.f):
$$
f(x) = \frac{\alpha\theta^\alpha}{(x + \theta)^{\alpha + 1}}
$$
for \(x > 0\), \(\alpha > 0\) and \(\theta > 0\).
Cumulative distribution function (c.d.f):
$$
F(x) = 1 - \left(\frac{\theta}{x + \theta}\right)^\alpha
$$
for \(x > 0\).
Moment generating function (m.g.f):
Does not exist in closed form, but the \(k\)th raw moment \(E[X^k]\) exists
for \(-1 < k < \alpha\).