We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_uniform.html
In the following, let \(X\) be a Uniform random variable with parameters
min = \(a\) and max = \(b\).
Support: \([a, b]\)
Mean: \(\frac{a + b}{2}\)
Variance: \(\frac{(b - a)^2}{12}\)
Probability density function (p.d.f):
$$
f(x) = \frac{1}{b - a}
$$
for \(x \in [a, b]\), and \(f(x) = 0\) otherwise.
Cumulative distribution function (c.d.f):
$$
F(x) = \frac{x - a}{b - a}
$$
for \(x \in [a, b]\), with \(F(x) = 0\) for \(x < a\)
and \(F(x) = 1\) for \(x > b\).
Moment generating function (m.g.f):
$$
E(e^{tX}) = \frac{e^{tb} - e^{ta}}{t(b - a)}
$$
for \(t \neq 0\), and \(E(e^{tX}) = 1\) for \(t = 0\).
Skewness: \(0\)
Excess Kurtosis: \(-\frac{6}{5}\)