We recommend reading this documentation on pkgdown which renders math nicely.
https://pkg.mitchelloharawild.com/distributional/reference/dist_weibull.html
In the following, let \(X\) be a Weibull random variable with
shape parameter shape = \(k\) and scale parameter scale = \(\lambda\).
Support: \([0, \infty)\)
Mean:
$$
E(X) = \lambda \Gamma\left(1 + \frac{1}{k}\right)
$$
where \(\Gamma\) is the gamma function.
Variance:
$$
\text{Var}(X) = \lambda^2 \left[\Gamma\left(1 + \frac{2}{k}\right) - \left(\Gamma\left(1 + \frac{1}{k}\right)\right)^2\right]
$$
Probability density function (p.d.f):
$$
f(x) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^k}, \quad x \ge 0
$$
Cumulative distribution function (c.d.f):
$$
F(x) = 1 - e^{-(x/\lambda)^k}, \quad x \ge 0
$$
Moment generating function (m.g.f):
$$
E(e^{tX}) = \sum_{n=0}^\infty \frac{t^n\lambda^n}{n!} \Gamma\left(1+\frac{n}{k}\right)
$$
Skewness:
$$
\gamma_1 = \frac{\mu^3 - 3\mu\sigma^2 - \mu^3}{\sigma^3}
$$
where \(\mu = E(X)\), \(\sigma^2 = \text{Var}(X)\), and the third
raw moment is
$$
\mu^3 = \lambda^3 \Gamma\left(1 + \frac{3}{k}\right)
$$
Excess Kurtosis:
$$
\gamma_2 = \frac{\mu^4 - 4\gamma_1\mu\sigma^3 - 6\mu^2\sigma^2 - \mu^4}{\sigma^4} - 3
$$
where the fourth raw moment is
$$
\mu^4 = \lambda^4 \Gamma\left(1 + \frac{4}{k}\right)
$$