The reversed (or negated) Weibull distribution is a special case of the
\link{GEV} distribution, obtained when the GEV shape parameter \(\xi\)
is negative.  It may be referred to as a type III extreme value
distribution.
RevWeibull(location = 0, scale = 1, shape = 1)A RevWeibull object.
The location (maximum) parameter \(m\).
location can be any real number.  Defaults to 0.
The scale parameter \(s\).
scale can be any positive number.  Defaults to 1.
The scale parameter \(\alpha\).
shape can be any positive number.  Defaults to 1.
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let \(X\) be a reversed Weibull random variable with
location parameter  location = \(m\), scale parameter scale =
\(s\), and shape parameter shape = \(\alpha\).
An RevWeibull(\(m, s, \alpha\)) distribution is equivalent to a
\link{GEV}(\(m - s, s / \alpha, -1 / \alpha\)) distribution.
If \(X\) has an RevWeibull(\(m, \lambda, k\)) distribution then
\(m - X\) has a \link{Weibull}(\(k, \lambda\)) distribution,
that is, a Weibull distribution with shape parameter \(k\) and scale
parameter \(\lambda\).
Support: \((-\infty, m)\).
Mean: \(m + s\Gamma(1 + 1/\alpha)\).
Median: \(m + s(\ln 2)^{1/\alpha}\).
Variance: \(s^2 [\Gamma(1 + 2 / \alpha) - \Gamma(1 + 1 / \alpha)^2]\).
Probability density function (p.d.f):
$$f(x) = \alpha s ^ {-1} [-(x - m) / s] ^ {\alpha - 1}% \exp\{-[-(x - m) / s] ^ {\alpha} \}$$ for \(x < m\). The p.d.f. is 0 for \(x \geq m\).
Cumulative distribution function (c.d.f):
$$F(x) = \exp\{-[-(x - m) / s] ^ {\alpha} \}$$ for \(x < m\). The c.d.f. is 1 for \(x \geq m\).
set.seed(27)
X <- RevWeibull(1, 2)
X
random(X, 10)
pdf(X, 0.7)
log_pdf(X, 0.7)
cdf(X, 0.7)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 0.7))
Run the code above in your browser using DataLab