## Estimate confidence intervals for sigma^2 under a single-process BM model
## 10 bootstrap replicates
# simulate dataset
ages = rep(c(0.5, 1, 1.5, 2, 3, 8), 25)
sig2 = 0.2
sis_div = simulate_div(model="BM_null", ages=ages, pars=sig2)
# Run bootstrap_ci
N=100
res = bootstrap_ci(div=sis_div, ages=ages, model=("BM_null"), N=N)
res
# \donttest{
## Estimate confidence intervals for all parameters under a DA_linear model
## 10 bootstrap replicates.
# simulate dataset under DA_linear
# pairs are evenly distributed across a 0-60 degree latitudinal gradient
ages = rep(c(0.5, 1, 1.5, 2, 3, 8), 25)
grad_cats = rep(c(0, 15, 30, 45, 60), 30)
grad=c(rep(grad_cats[1], 30), rep(grad_cats[2],30), rep(grad_cats[3],30),
rep(grad_cats[4],30), rep(grad_cats[5],30))
alpha = 0.8
sig2 = 0.2
psi_sl = -0.01
psi_int = 2
sis_div = simulate_div(model="DA_linear", ages=ages, pars=c(alpha, sig2, psi_sl, psi_int),
GRAD=grad)
# Run bootstrap_ci
N = 10
res = bootstrap_ci(div=sis_div, ages=ages, GRAD=grad, domain=c(0,60),
model=("DA_linear"), N=N)
res
## Estimate confidence intervals for psi1 and psi2 under a 2-category DA_cat
## model given 10 bootstrap replicates.
ages = rep(c(0.5, 1, 1.5, 2, 3, 8), 25)
grad_cats = rep(c(0, 15, 30, 45, 60), 30)
cats = c(rep(0, 75), rep(1, 75))
alpha = 0.8
sig2 = 0.2
psi1 = 0.5
psi2 = 1
N = 2
sis_div = simulate_div(model="DA_cat", ages=ages, pars=c(alpha, sig2, psi1, psi2), cats=cats)
res = bootstrap_ci(div=sis_div, ages=ages, cats=cats, model=("DA_cat"), N=N, parallel=FALSE)
res
# }
Run the code above in your browser using DataLab