## Find the maximum likelihood and parameters for a DA_linear model
# assume an elevational gradient from 0-1000m
# simulate a dataset
ages = rep(c(0.5, 1, 1.5, 2, 3, 8), 25)
grad_cats = rep(c(0, 250, 500, 750, 1000), 30)
grad=c(rep(grad_cats[1], 30), rep(grad_cats[2],30), rep(grad_cats[3],30),
rep(grad_cats[4],30), rep(grad_cats[5],30))
alpha = 0.8
sig2 = 0.2
psi_sl = -0.01
psi_int = 2
sis_div = simulate_div(model="DA_linear", ages=ages,
pars=c(alpha, sig2, psi_sl, psi_int), GRAD=grad)
# find max. likelihood and estimate parameters
res = find_mle(model="DA_linear", div=sis_div, ages=ages, GRAD=grad, domain=c(0,1000))
Run the code above in your browser using DataLab