dmbc_prior()
is an auxiliary function as user interface for
dmbc()
fitting. Typically only used when calling the dmbc()
function. It is used to set prior hyperparameters.
prior_dmbc()
is an alias for dmbc_prior()
.
check_prior()
is an auxiliary function that verifies the
correctness of the prior hyperparameters provided before a DMBC is fitted
with dmbc()
.
update_prior()
is an auxiliary function to modify a set of prior
choices using a new value of p and G. It is intended for
internal use mainly in the dmbc_ic()
function.
dmbc_prior(
eta = list(a = rep(1.5, .dmbcEnv$current_G), b = rep(0.5, .dmbcEnv$current_G)),
sigma2 = list(a = 0.1, b = 0.1),
lambda = rep(1, .dmbcEnv$current_G)
)prior_dmbc(
eta = list(a = rep(1.5, .dmbcEnv$current_G), b = rep(0.5, .dmbcEnv$current_G)),
sigma2 = list(a = 0.1, b = 0.1),
lambda = rep(1, .dmbcEnv$current_G)
)
check_prior(prior)
update_prior(prior, p, G)
A named list containing the hyperparameters for the prior
distribution of the a
and b
.
A named list containing the hyperparameters for the prior
distributions of the a
and b
.
A list containing the hyperparameters for the prior
distribution of the
A named list of prior hyperparameters.
A length-one numeric vector indicating the number of dimensions of the latent space.
A length-one numeric vector indicating the number of cluster to partition the S subjects.
A list with the prior hyperparameters as components.
dmbc()
# NOT RUN {
data(simdiss, package = "dmbc")
# Shorter run than default.
sim.fit <- dmbc(simdiss,
control = dmbc_control(burnin = 1000, nsim = 2000, thin = 1, verbose = TRUE),
prior = dmbc_prior(sigma2 = list(a = 1, b = 4)))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab