dmbc_fit
class using new/initialize.Create an instance of the dmbc_fit
class using new/initialize.
# S4 method for dmbc_fit
initialize(
.Object,
z.chain = array(),
z.chain.p = array(),
alpha.chain = matrix(),
eta.chain = matrix(),
sigma2.chain = matrix(),
lambda.chain = matrix(),
prob.chain = array(),
x.ind.chain = array(),
x.chain = matrix(),
accept = matrix(),
diss = list(),
dens = list(),
control = list(),
prior = list(),
dim = list(),
model = NA
)
Prototype object from the class dmbc_fit
.
An object of class array
; posterior draws from
the MCMC algorithm for the (untransformed) latent configuration \(Z\).
An object of class array
; posterior draws from
the MCMC algorithm for the (Procrustes-transformed) latent configuration
\(Z\).
An object of class matrix
; posterior draws
from the MCMC algorithm for the \(\alpha\) parameters.
An object of class matrix
; posterior draws
from the MCMC algorithm for the \(\eta\) parameters.
An object of class matrix
; posterior draws
from the MCMC algorithm for the \(\sigma^2\) parameters.
An object of class matrix
; posterior draws
from the MCMC algorithm for the \(\lambda\) parameters.
An object of class array
; posterior draws
from the MCMC algorithm for the cluster membership probabilities.
An object of class array
; posterior draws
from the MCMC algorithm for the cluster membership indicators.
An object of class matrix
; posterior draws from
the MCMC algorithm for the cluster membership labels.
An object of class matrix
; final acceptance rates
for the MCMC algorithm.
An object of class list
; list of observed
dissimilarity matrices.
An object of class list
; list of log-likelihood,
log-prior and log-posterior values at each iteration of the MCMC simulation.
An object of class list
; list of the control
parameters (number of burnin and sample iterations, number of MCMC chains,
etc.). See dmbc_control()
for more information.
An object of class list
; list of the prior
hyperparameters. See dmbc_prior()
for more information.
An object of class list
; list of dimensions for
the estimated model, i.e. number of objects (n), number of latent
dimensions (p), number of clusters (G), and number of
subjects (S).
An object of class dmbc_model
.
Sergio Venturini sergio.venturini@unicatt.it