log(f(y, theta, ...))
with respect to theta[[i]]
/theta[[i]]
and theta[[j]]
.numDerivLogf(f, logZero = .Machine$double.xmin,
logInf = .Machine$double.xmax/2, method = "Richardson",
method.args = list(eps = 1e-04, d = 0.1, zero.tol =
sqrt(.Machine$double.eps/7e-07), r = 4, v = 2, show.details = F))numDeriv2Logf(f, logZero = .Machine$double.xmin,
logInf = .Machine$double.xmax/2, method = "Richardson",
method.args = list(eps = 1e-04, d = 0.1, zero.tol =
sqrt(.Machine$double.eps/7e-07), r = 4, v = 2, show.details = F))
function(y, theta, ...)
, where theta
is a list of parameters.
A joint probability density function.log(f)
should return if f
evaluates to 0
.log(f)
should return if f
evaluates to Inf
.numDerivLogf
returns function(y, theta, i, ...)
which evaluates to the first derivative of log(f(y, theta, ...))
with respect to theta[[i]]
.numDeriv2Logf
returns function(y, theta, i, j, ...)
which evaluates to the second derivative of log(f(y, theta, ...))
with respect to theta[[i]]
and theta[[j]]
.
NaN
s if the log evaluates to (negative) Inf
so you may want to specify logZero
and logInf
.buildf
, DerivLogf
, fisherI