simu.Weibull: Simulating doubly-truncated data from the Weibull model
Description
A data frame is generated by simulated data from the Weibull model.
Usage
simu.Weibull(n,mu,sigma,delta)
Value
u
lower truncation limits
y
log-transformed lifetimes
v
upper truncation limits
Arguments
n
sample size
mu
location parameter
sigma
scale parameter
delta
a positive parameter controlling the inclusion probability
Author
Takeshi Emura
Details
The data are generated from the random vector (U,Y,V) subject to the inclusion criterion U<=Y<=V.
The random vector are defined as U=mu-delta+sigma*W, Y=mu+sigma*W, and U=mu+delta+sigma*W, where P(W>w)=exp(-exp(w)).
See Section 5.1 of Dorre et al. (2020-) for details. The inclusion probability is P(U<=Y<=V).
References
Dorre A, Huang CY, Tseng YK, Emura T (2020-) Likelihood-based analysis of
doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6
## A simulation from Dorre et al.(2020) ##simu.Weibull(n=100,mu=5,sigma=2,delta=2.08)
Dat=simu.Weibull(n=100,mu=5,sigma=2,delta=2.08)
PMLE.Weibull(Dat$u,Dat$y,Dat$v)