Learn R Programming

double.truncation (version 1.8)

PMLE.SEF3.negative: Parametric Inference for the three-parameter SEF model (negative parameter space for eta_3)

Description

Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other qnantities.

Usage

PMLE.SEF3.negative(u.trunc, y.trunc, v.trunc, tau1 = min(y.trunc),
 epsilon = 1e-04, D1=20, D2=10, D3=1, d1=6, d2=0.5)

Value

eta

estimates

SE

standard errors

convergence

Log-likelihood, degree of freedom, AIC, the number of iterations

Score

score vector at the converged value

Hessian

Hessian matrix at the converged value

Arguments

u.trunc

lower truncation limit

y.trunc

variable of interest

v.trunc

upper truncation limit

tau1

lower support

epsilon

error tolerance for Newton-Raphson

D1

Divergence condition for eta_1

D2

Divergence condition of eta_2

D3

Divergence condition of eta_3

d1

Range of randomization for eta_1

d2

Range of randomization for eta_2

Author

Takeshi Emura, Ya-Hsuan Hu

Details

Details are seen from the references.

References

Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229

Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909

Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer

Examples

Run this code
## The first 10 samples of the childhood cancer data ##
y.trunc=c(6,7,15,43,85,92,96,104,108,123)
u.trunc=c(-1643,-24,-532,-1508,-691,-1235,-786,-261,-108,-120)
v.trunc=u.trunc+1825
PMLE.SEF3.negative(u.trunc,y.trunc,v.trunc)

Run the code above in your browser using DataLab