The test for comparing counts from two or more digital PCR experiments.
test_counts(input, model = "ratio", conf.level = 0.95)
may have one of following values: binomial
, poisson
,
prop
, ratio
. See Details.
confidence level of the intervals and groups.
test_counts
incorporates two different approaches to models: GLM (General Linear
Model) and multiple pair-wise tests. The GLM fits counts data from different
digital PCR experiments using quasibinomial or quasipoisson family
.
Comparisons between single experiments utilize Tukey's contrast and multiple t-tests
(as provided by function glht
).
In case of pair-wise tests, (rateratio.test
or
prop.test
) are used to compare all pairs of experiments. The
p-values are adjusted using the Benjamini & Hochberg method (p.adjust
).
Furthermore, confidence intervals are simultaneous.
Bretz F, Hothorn T, Westfall P, Multiple comparisons using R. Boca Raton, Florida, USA: Chapman & Hall/CRC Press (2010).
Functions used by test_counts
:
GUI presenting capabilities of the test: test_counts_gui
.
# NOT RUN {
#be warned, the examples of test_counts are time-consuming
# }
# NOT RUN {
adpcr1 <- sim_adpcr(m = 10, n = 765, times = 1000, pos_sums = FALSE, n_panels = 3)
adpcr2 <- sim_adpcr(m = 60, n = 550, times = 1000, pos_sums = FALSE, n_panels = 3)
adpcr2 <- rename_dpcr(adpcr2, exper = "Experiment2")
adpcr3 <- sim_adpcr(m = 10, n = 600, times = 1000, pos_sums = FALSE, n_panels = 3)
adpcr3 <- rename_dpcr(adpcr3, exper = "Experiment3")
#compare experiments using binomial regression
two_groups_bin <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "binomial")
summary(two_groups_bin)
plot(two_groups_bin)
#plot aggregated results
plot(two_groups_bin, aggregate = TRUE)
#get coefficients
coef(two_groups_bin)
#this time use Poisson regression
two_groups_pois <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "poisson")
summary(two_groups_pois)
plot(two_groups_pois)
#see how test behaves when results aren't significantly different
one_group <- test_counts(bind_dpcr(adpcr1, adpcr3))
summary(one_group)
plot(one_group)
# }
Run the code above in your browser using DataLab