Learn R Programming

dplR (version 1.6.4)

morlet: Perform a Continuous Morlet Wavelet Transform

Description

This function performs a continuous wavelet transform on a time series.

Usage

morlet(y1, x1 = seq_along(y1), p2 = NULL, dj = 0.25, siglvl = 0.95)

Arguments

y1
numeric vector. Series to be transformed.
x1
numeric. A vector of values giving the years for the plot. Must be the same length as length(y1).
p2
numeric. The number of power of two to be computed for the wavelet transform. Calculated from length of y1 if NULL.
dj
numeric. Sub-octaves per octave calculated.
siglvl
numeric. Level for the significance test.

Value

A list containing:
y
numeric. The original time series.
x
numeric. The time values.
wave
complex. The wavelet transform.
coi
numeric. The cone of influence.
period
numeric. The period.
Scale
numeric. The scale.
Signif
numeric. The significant values.
Power
numeric. The squared power.

Details

This performs a continuous wavelet transform of a time series. This function is typically invoked with wavelet.plot.

References

Torrence, C. and Compo, G. P. (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

See Also

wavelet.plot

Examples

Run this code
data(ca533)
ca533.rwi <- detrend(rwl = ca533, method = "ModNegExp")
ca533.crn <- chron(ca533.rwi, prefix = "CAM", prewhiten = FALSE)
Years <- as.numeric(rownames(ca533.crn))
CAMstd <- ca533.crn[, 1]
out.wave <- morlet(y1 = CAMstd, x1 = Years, dj = 0.1, siglvl = 0.99)

Run the code above in your browser using DataLab