Learn R Programming

dplRCon (version 1.0)

correlation.function: Performs correlations functions

Description

Uses the imported climate variables and tree ring data to produce seasonal correlation functions. Also, uses the bootstrapped chronologies to produce confidence intervals.

Usage

correlation.function(climate.anom.season.data, site.chron.data, site.boot.data, period.RF, col.names.season, Climate.name, Subset.name)

Arguments

climate.anom.season.data
climate data anomalies for seasons
site.chron.data
site chronologies, matrix: rows=year, col=subset.1, subset.2,fullest
site.boot.data
bootstrapped site chronologies, list: matrices for each subset with: row=year, col=bootstrapped series
period.RF
the period used to calculate response functions, vector: (start,end)
col.names.season
col.names.season<- list("SON_2", "DJF_2", "MAM_2", "JJA_2", "SON_1", "DJF_1", "MAM_1", "JJA_1", "SON", "DJF", "MAM", "JJA")
Climate.name
name of the climate variable for which correlation functions are being calculated
Subset.name
names given to each of the subsets.

Value

corr.site.1
The correlations between the climate variable and the site chronology for the 1st subset.
corr.site.2
The correlations between the climate variable and the site chronology for the 12st subset.
percentile.ci.1
The percentile confidence intervals for the 1st subset.
percentile.ci.2
The percentile confidence intervals for the 2st subset.
Other summary varibles
summary.ci.1
summary.ci.2
t.mean
Test for correlation equal zero
t.meanequal
Test for correlations from the two subsets are equal
percentile.ci

Examples

Run this code
## Not run: 
# period.RF<-c(1900,1990)
# col.names.season <- list("SON_2", "DJF_2", "MAM_2", "JJA_2", "SON_1", "DJF_1", "MAM_1","JJA_1",
#          "SON", "DJF", "MAM", "JJA")
# ##  Full dataset
# site.full <- site.chron(spline200.sub0.2000.n$sub.series.stand, aver.by.tree=F)
# site.chron.data <- cbind(site.full$aver.site, site.full$aver.site)
# site.boot.full <- ts(boot.full$boot.series.mean, start=tsp(site.full$aver.site)[1] )
# site.boot.data<-list(site.boot.full, site.boot.full)
# 
# corr.SOI.full<-correlation.function(SOI.anom.season.data, site.chron.data,site.boot.data,
#       period.RF, col.names.season,
#       Climate.name="SOI", Subset.name=c("0-20cm","20-200cm" ) )
# corr.prec.full<-correlation.function(prec.anom.season.data, site.chron.data,site.boot.data,
#      period.RF, col.names.season,
#      Climate.name="SOI", Subset.name=c("0-20cm","20-200cm" ) )
# corr.temp.full<-correlation.function(temp.anom.season.data, site.chron.data,site.boot.data,
#      period.RF, col.names.season,
#      Climate.name="SOI", Subset.name=c("0-20cm","20-200cm" ) )
# 
# ##	Near vs Far
# site.0.20  <- site.chron(spline200.sub0.20.n$sub.series.stand, aver.by.tree=F)
# site.20.200 <- site.chron(spline200.sub20.2000.n$sub.series.stand, aver.by.tree=F)
# site.chron.data <- cbind(site.0.20$aver.site, site.20.200$aver.site)
# 
# site.boot.0.20 <- ts(boot.0.20$boot.series.mean, start=tsp(site.0.20$aver.site)[1] )
# site.boot.20.200 <- ts(boot.20.2000$boot.series.mean, start=tsp(site.20.200$aver.site)[1] )
# site.boot.data<-list(site.boot.0.20, site.boot.20.200)
# 
# corr.SOI<-correlation.function(SOI.anom.season.data, site.chron.data, site.boot.data,
#    period.RF, col.names.season,
#    Climate.name="SOI",Subset.name=c("0-20cm","20-200cm" ) )
# corr.prec<-correlation.function(prec.anom.season.data, site.chron.data,          site.boot.data,
#    period.RF, col.names.season,
#    Climate.name="SOI", Subset.name=c("0-20cm","20-200cm" ) )
# corr.temp<-correlation.function(temp.anom.season.data, site.chron.data, site.boot.data,
#    period.RF, col.names.season,
#    Climate.name="SOI", Subset.name=c("0-20cm","20-200cm" ) )
# ## End(Not run)

Run the code above in your browser using DataLab