# Load data
data(car)
# Parameter learning with "best/1/bin" variant
dpl.best1bin <- DEbest(NP = 25, G = 35, data = car, class.name = names(car)[7], F = 0.5,
CR = 0.7, mutation.pairs = 1, crossover = "bin", structure = "tan", edgelist = NULL,
verbose = 10)
# Print results
print(dpl.best1bin)
if (FALSE) plot(dpl.best1bin)
Run the code above in your browser using DataLab