
base_scalarbase_agg
base_win
sql_variant(scalar = sql_translator(), aggregate = sql_translator(),
window = sql_translator())
sql_translator(..., .funs = list(), .parent = new.env(parent = emptyenv()))
sql_infix(f)
sql_prefix(f, n = NULL)
sql_not_supported(f)
...
, or
provide a list of .funs
base_sql
which provides a standard set of
mappings for the most common operators and functions.sql_infix
, an optional number of arguments to expect.
Will signal error if not correct.sql_infix
and sql_prefix
create default SQL infix and prefix
functions given the name of the SQL function. They don't perform any input
checking, but do correctly escape their input, and are useful for
quickly providing default wrappers for a new SQL variant.
sql
for an example of a more customised sql
conversion function.# An example of adding some mappings for the statistical functions that
# postgresql provides: http://bit.ly/K5EdTn
postgres_agg <- sql_translator(.parent = base_agg,
cor = sql_prefix("corr"),
cov = sql_prefix("covar_samp"),
sd = sql_prefix("stddev_samp"),
var = sql_prefix("var_samp")
)
postgres_var <- sql_variant(
base_scalar,
postgres_agg
)
translate_sql(cor(x, y), variant = postgres_var)
translate_sql(sd(income / years), variant = postgres_var)
# Any functions not explicitly listed in the converter will be translated
# to sql as is, so you don't need to convert all functions.
translate_sql(regr_intercept(y, x), variant = postgres_var)
Run the code above in your browser using DataLab