dplyr v0.7.1

0

Monthly downloads

0th

Percentile

A Grammar of Data Manipulation

A fast, consistent tool for working with data frame like objects, both in memory and out of memory.

Readme

dplyr

Build Status AppVeyor Build Status CRAN\_Status\_Badge codecov

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

  • mutate() adds new variables that are functions of existing variables
  • select() picks variables based on their names.
  • filter() picks cases based on their values.
  • summarise() reduces multiple values down to a single summary.
  • arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation "by group". You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table").

dplyr is designed to abstract over how the data is stored. That means as well as working with local data frames, you can also work with remote database tables, using exactly the same R code. Install the dbplyr package then read vignette("databases", package = "dbplyr").

If you are new to dplyr, the best place to start is the data import chapter in R for data science.

Installation

# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just dplyr:
install.packages("dplyr")

# Or the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("tidyverse/dplyr")

If you encounter a clear bug, please file a minimal reproducible example on github. For questions and other discussion, please use the manipulatr mailing list.

Usage

library(dplyr)

starwars %>% 
  filter(species == "Droid")
#> # A tibble: 5 x 13
#>    name height  mass hair_color  skin_color eye_color birth_year gender
#>   <chr>  <int> <dbl>      <chr>       <chr>     <chr>      <dbl>  <chr>
#> 1 C-3PO    167    75       <NA>        gold    yellow        112   <NA>
#> 2 R2-D2     96    32       <NA> white, blue       red         33   <NA>
#> 3 R5-D4     97    32       <NA>  white, red       red         NA   <NA>
#> 4 IG-88    200   140       none       metal       red         15   none
#> 5   BB8     NA    NA       none        none     black         NA   none
#> # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
#> #   vehicles <list>, starships <list>

starwars %>% 
  select(name, ends_with("color"))
#> # A tibble: 87 x 4
#>             name hair_color  skin_color eye_color
#>            <chr>      <chr>       <chr>     <chr>
#> 1 Luke Skywalker      blond        fair      blue
#> 2          C-3PO       <NA>        gold    yellow
#> 3          R2-D2       <NA> white, blue       red
#> 4    Darth Vader       none       white    yellow
#> 5    Leia Organa      brown       light     brown
#> # ... with 82 more rows

starwars %>% 
  mutate(name, bmi = mass / ((height / 100)  ^ 2)) %>%
  select(name:mass, bmi)
#> # A tibble: 87 x 4
#>             name height  mass      bmi
#>            <chr>  <int> <dbl>    <dbl>
#> 1 Luke Skywalker    172    77 26.02758
#> 2          C-3PO    167    75 26.89232
#> 3          R2-D2     96    32 34.72222
#> 4    Darth Vader    202   136 33.33007
#> 5    Leia Organa    150    49 21.77778
#> # ... with 82 more rows

starwars %>% 
  arrange(desc(mass))
#> # A tibble: 87 x 13
#>                    name height  mass hair_color       skin_color
#>                   <chr>  <int> <dbl>      <chr>            <chr>
#> 1 Jabba Desilijic Tiure    175  1358       <NA> green-tan, brown
#> 2              Grievous    216   159       none     brown, white
#> 3                 IG-88    200   140       none            metal
#> 4           Darth Vader    202   136       none            white
#> 5               Tarfful    234   136      brown            brown
#> # ... with 82 more rows, and 8 more variables: eye_color <chr>,
#> #   birth_year <dbl>, gender <chr>, homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

starwars %>%
  group_by(species) %>%
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
  ) %>%
  filter(n > 1)
#> # A tibble: 9 x 3
#>    species     n     mass
#>      <chr> <int>    <dbl>
#> 1    Droid     5 69.75000
#> 2   Gungan     3 74.00000
#> 3    Human    35 82.78182
#> 4 Kaminoan     2 88.00000
#> 5 Mirialan     2 53.10000
#> # ... with 4 more rows

Functions in dplyr

Name Description
backend_dbplyr Database and SQL generics.
band_members Band membership
all_vars Apply predicate to all variables
arrange_all Arrange rows by a selection of variables
as.tbl_cube Coerce an existing data structure into a tbl_cube
auto_copy Copy tables to same source, if necessary
arrange Arrange rows by variables
as.table.tbl_cube Coerce a tbl_cube to other data structures
add_rownames Convert row names to an explicit variable.
all_equal Flexible equality comparison for data frames
common_by Extract out common by variables
bench_compare Evaluate, compare, benchmark operations of a set of srcs.
check_dbplyr dbplyr compatiblity functions
compute Force computation of a database query
bind Efficiently bind multiple data frames by row and column
case_when A general vectorised if
copy_to Copy a local data frame to a remote src
cumall Cumulativate versions of any, all, and mean
failwith Fail with specified value.
filter_all Filter within a selection of variables
filter Return rows with matching conditions
funs Create a list of functions calls.
group_by Group by one or more variables
group_indices Group id.
coalesce Find first non-missing element
distinct Select distinct/unique rows
do Do anything
location Print the location in memory of a data frame
make_tbl Create a "tbl" object
reexports Objects exported from other packages
rowwise Group input by rows
group_size Calculate group sizes.
grouped_df A grouped data frame.
join.tbl_df Join data frame tbls
lead-lag Lead and lag.
between Do values in a numeric vector fall in specified range?
desc Descending order
dim_desc Describing dimensions
groups Return grouping variables
nth Extract the first, last or nth value from a vector
order_by A helper function for ordering window function output
scoped Operate on a selection of variables
tally_ Deprecated SE versions of main verbs.
id Compute a unique numeric id for each unique row in a data frame.
n The number of observations in the current group.
na_if Convert values to NA
progress_estimated Progress bar with estimated time.
select Select/rename variables by name
setops Set operations
summarise_all Summarise and mutate multiple columns.
slice Select rows by position
sql SQL escaping.
tbl_vars List variables provided by a tbl.
tbl Create a table from a data source
group_by_all Group by a selection of variables
group_by_prepare Prepare for grouping.
mutate Add new variables
n_distinct Efficiently count the number of unique values in a set of vector
dplyr-package dplyr: a grammar of data manipulation
explain Explain details of a tbl
ident Flag a character vector as SQL identifiers
ranking Windowed rank functions.
recode Recode values
select_all Select and rename a selection of variables
pull Pull out a single variable
same_src Figure out if two sources are the same (or two tbl have the same source)
sample Sample n rows from a table
src_dbi Source for database backends
select_helpers Select helpers
starwars Starwars characters
storms Storm tracks data
with_order Run a function with one order, translating result back to original order
if_else Vectorised if
init_logging Enable internal logging
join Join two tbls together
nasa NASA spatio-temporal data
near Compare two numeric vectors
select_var Select variable
select_vars Select variables.
src_tbls List all tbls provided by a source.
src Create a "src" object
summarise_each Summarise and mutate multiple columns.
tbl_cube A data cube tbl
tbl_df Create a data frame tbl.
summarise Reduces multiple values down to a single value
tally Count/tally observations by group
src_local A local source.
top_n Select top (or bottom) n rows (by value)
vars Select variables
No Results!

Vignettes of dplyr

Name
internals/hybrid-evaluation.Rmd
compatibility.Rmd
dplyr.Rmd
programming.Rmd
two-table.Rmd
window-functions.Rmd
No Results!

Last month downloads

Details

Type Package
URL http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr
BugReports https://github.com/tidyverse/dplyr/issues
Encoding UTF-8
VignetteBuilder knitr
LinkingTo Rcpp (>= 0.12.0), BH (>= 1.58.0-1), bindrcpp, plogr
LazyData yes
License MIT + file LICENSE
RoxygenNote 6.0.1
NeedsCompilation yes
Packaged 2017-06-19 18:42:06 UTC; hadley
Repository CRAN
Date/Publication 2017-06-22 13:31:04 UTC

Include our badge in your README

[![Rdoc](http://www.rdocumentation.org/badges/version/dplyr)](http://www.rdocumentation.org/packages/dplyr)