dplyr (version 1.0.10)

arrange_all: Arrange rows by a selection of variables



Scoped verbs (_if, _at, _all) have been superseded by the use of across() in an existing verb. See vignette("colwise") for details.

These scoped variants of arrange() sort a data frame by a selection of variables. Like arrange(), you can modify the variables before ordering with the .funs argument.


arrange_all(.tbl, .funs = list(), ..., .by_group = FALSE)

arrange_at(.tbl, .vars, .funs = list(), ..., .by_group = FALSE)

arrange_if(.tbl, .predicate, .funs = list(), ..., .by_group = FALSE)



A tbl object.


A function fun, a quosure style lambda ~ fun(.) or a list of either form.


Additional arguments for the function calls in .funs. These are evaluated only once, with tidy dots support.


If TRUE, will sort first by grouping variable. Applies to grouped data frames only.


A list of columns generated by vars(), a character vector of column names, a numeric vector of column positions, or NULL.


A predicate function to be applied to the columns or a logical vector. The variables for which .predicate is or returns TRUE are selected. This argument is passed to rlang::as_function() and thus supports quosure-style lambda functions and strings representing function names.

Grouping variables

The grouping variables that are part of the selection participate in the sorting of the data frame.


Run this code
df <- as_tibble(mtcars)
# ->
arrange(df, across())

arrange_all(df, desc)
# ->
arrange(df, across(everything(), desc))

Run the code above in your browser using DataLab