Learn R Programming

⚠️There's a newer version (2.0.0) of this package.Take me there.

build status:

license:

cran status:

release version:

dr4pl

The package dr4pl (Dose Response 4 Parameter Logisitic model) specializes in applying the 4 Parameter Logistic (4PL) model. The 4PL model has been recognized as a major tool to analyze the relationship between a dose and a response in pharmacological experiments. The package dr4pl may be used to model increasing and decreasing curves. The goal of dr4pl is to bring a statistical method which is capable of handeling specific error cases of which other statistical packages produce errors. Examples of Dose Response datasets that will produce errors in other packages may be accessed by name once dr4pl is loaded and these data sets are under the names of drc_error_1, drc_error_2, drc_error_3, and drc_error_4. Along with these error data sets, this package also supplies 13 standard example data sets for the 4PL model under the name sample_data_1, sampel_data_2, etc. The package dr4pl also alows for the user to decide how their theta variable is approximated. The user may choose the default logistic model or use Mead's Method. Additionally, the user may decide between four loss functions to minimize: Squared, Absolute, Huber, or Tukey's biweight. Please attempt each of the loss functions and choose the best fit from plotting the dr4pl object.

Installation

You can install dr4pl from github with:

# install.packages("devtools")
devtools::install_bitbucket("dittmerlab/dr4pl")

Example

This is a basic example which shows you how to solve a common problem. This example may be used with drc_error_1, drc_error_2, drc_error_3, and drc_error_4:

## basic example code, datasets
## example requires the drc and dr4pl package to be loaded
library(dr4pl)
library(drc)
#> Loading required package: MASS
#> 
#> 'drc' has been loaded.
#> Please cite R and 'drc' if used for a publication,
#> for references type 'citation()' and 'citation('drc')'.
#> 
#> Attaching package: 'drc'
#> The following objects are masked from 'package:stats':
#> 
#>     gaussian, getInitial
a <- drc::drm(drc_error_1$Response~drc_error_1$Dose, fct = LL.4())
#> Error in drmOpt(opfct, opdfct1, startVecSc, optMethod, constrained, warnVal, : Convergence failed
plot(a)
#> Error in plot(a): object 'a' not found
## basic example code
## example requires the dr4pl package to be loaded
b <- dr4pl(drc_error_1$Response~drc_error_1$Dose, method.init = "logistic", method.robust = "Tukey") 
plot(b)
#> Warning: Transformation introduced infinite values in continuous x-axis

#> Warning: Transformation introduced infinite values in continuous x-axis

summary(b)
#> $call
#> dr4pl.formula(formula = drc_error_1$Response ~ drc_error_1$Dose, 
#>     method.init = "logistic", method.robust = "Tukey")
#> 
#> $coefficients
#>                 Estimate       StdErr         2.5 %        97.5 %
#> UpperLimit  7.913355e+04 3.272348e-03  7.900479e+04  7.926230e+04
#> IC50        4.258701e-13 2.527011e-04  4.859580e-23  3.732120e-03
#> Slope      -7.370728e-02 2.195757e-06 -1.601007e-01  1.268611e-02
#> LowerLimit -8.393064e+03 3.273840e-03 -8.521875e+03 -8.264253e+03
#> 
#> attr(,"class")
#> [1] "summary.dr4pl"

Copy Link

Version

Install

install.packages('dr4pl')

Monthly Downloads

462

Version

1.1.11

License

GPL (>= 2)

Maintainer

Justin T. Landis

Last Published

October 7th, 2019

Functions in dr4pl (1.1.11)

MeanResponse

Compute an estimated mean response.
FindHillBounds

FindHillBounds
gof.dr4pl

Perform the goodness-of-fit (gof) test for the 4PL model.
coef.dr4pl

Obtain coefficients of a 4PL model
print.summary.dr4pl

Print the dr4pl object summary to screen.
print.dr4pl

Print the dr4pl object to screen.
FindInitialParms

FindInitialParms
sample_data_5

sample_data_5
confint.dr4pl

Fit a 4 parameter logistic (4PL) model to dose-response data.
drc_error_1

Single High Outlier
drc_error_2

Multiple High Outliers at Different measurements
plot.dr4pl

Make a plot of a 4PL model curve and data
sample_data_8

sample_data_8
sample_data_7

sample_data_7
drc_error_3

Support Problem and Outliers at a Single Dose Level
sample_data_13

sample_data_13
drc_error_4

Support Problem
vcov.dr4pl

Obtain the variance-covariance matrix of the parameter estimators of a 4PL model.
sample_data_2

sample_data_2
FindLogisticGrids

FindLogisticGrids
IC

Obtain Inhibitory Concentrations (IC) of a dose-response curve
sample_data_1

sample_data_1
sample_data_3

sample_data_3
sample_data_4

sample_data_4
sample_data_10

sample_data_10
sample_data_9

sample_data_9
summary.dr4pl

summary
sample_data_6

sample_data_6
sample_data_11

sample_data_11
sample_data_12

sample_data_12
OutlierDetection

Detect outliers by the method of Motulsky and Brown (2006).
dr4pl

Fitting 4 Parameter Logistic (4PL) models to dose-response data.
dr4plEst

Private function to fit the 4PL model to dose-response data