## First fitting a model without random effects
#model1 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
#collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE))
## Then fitting the same model (the same fixed effects)
## but with random effects (assigned to d)
#model2 <- mixdrc(model1, random="d~1|CURVE", data=PestSci)
#compParm(model2, "e", "-")
## Fitting a model without random effects
## but with a Box-Cox transformation
#model3 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
#collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE), boxcox=TRUE)
## Then fitting the same model with random effects assigned to d
#model4 <- mixdrc(model3, random="d~1|CURVE", data=PestSci)
#compParm(model4, "e", "-")
## Fitting a model without random effects, but fixing the c parameter at 0
#model5 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
#collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE), boxcox=TRUE,
#fct=l4(fixed=c(NA,0,NA,NA)))
## Fitting the corresponding mixed model with random effects on d
#model6 <- mixdrc(model5, random="d~1|CURVE", data=PestSci)
#rm(model1, model2, model3, model4, model5, model6)
Run the code above in your browser using DataLab