logistic(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"), fctName, fctText)
L.3(fixed = c(NA, NA, NA), names = c("b", "d", "e"))
L.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"))
L.5(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"))
boltzmann(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"), fctName, fctText)
B.3(fixed = c(NA, NA, NA), names = c("b", "d", "e"))
B.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"))
B.5(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"))
llogistic
and llogistic2
where the term ## Fitting the four-parameter logistic model
ryegrass.m1 <- drm(rootl ~ conc, data = ryegrass, fct = L.4())
summary(ryegrass.m1)
## Fitting an asymmetric logistic model
## requires installing the package 'NISTnls'
# Ratkowsky3.m1 <- drm(y~x, data = Ratkowsky3,
# fct = L.5(fixed = c(NA, 0, NA, NA, NA)))
# plot(Ratkowsky3.m1)
# summary(Ratkowsky3.m1)
## okay agreement with NIST values
## for the two parameters that are the same
Run the code above in your browser using DataLab