# NOT RUN {
# Train a distributional random forest with CART splitting rule.
n <- 100
p <- 2
X <- matrix(rnorm(n * p), n, p)
Y <- X + matrix(rnorm(n * p), ncol=p)
drf.forest <- drf(X = X, Y = Y)
# Predict conditional correlation.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
cor.pred <- predict(drf.forest, X.test, functional = "cor")
# Predict on out-of-bag training samples.
cor.oob.pred <- predict(drf.forest, functional = "cor")
# Train a distributional random forest with "FourierMMD" splitting rule.
n <- 100
p <- 2
X <- matrix(rnorm(n * p), n, p)
Y <- X + matrix(rnorm(n * p), ncol=p)
drf.forest <- drf(X = X, Y = Y, splitting.rule = "FourierMMD", num.features = 10)
# Predict conditional correlation.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
cor.pred <- predict(drf.forest, X.test, functional = "cor")
# Predict on out-of-bag training samples.
cor.oob.pred <- predict(drf.forest, functional = "cor")
# }
Run the code above in your browser using DataLab