# Create a toy dataset
set.seed(123)
# Number of rows to be generated
n <- 10000
# Creating dataset
dataset <- data.frame(
Var_1 = round(rnorm(n, mean = 50, sd = 10)),
Var_2 = round(rnorm(n, mean = 7.5, sd = 2.1)),
Var_3 = as.factor(sample(c("0", "1"), n, replace = TRUE)),
Var_4 = as.factor(sample(c("0", "1", "2"), n, replace = TRUE)),
Var_5 = as.factor(sample(0:15, n, replace = TRUE)),
Var_6 = round(rnorm(n, mean = 60, sd = 5))
)
# Save the dataset to a temporary file
temp_file <- tempfile(fileext = ".csv")
write.csv(dataset, file = temp_file, row.names = FALSE)
# Path to the temporary file
dataset_path <- temp_file
dataset_path # Display the path to the temporary file
# Initialize the data reading function with the data set path and chunk size
da <- drglm::make.data(dataset_path, chunksize = 1000)
# Fitting MLR Models
nmodel <- drglm::big.drglm(da,
formula = Var_1 ~ Var_2+ factor(Var_3)+factor(Var_4)+ factor(Var_5)+ Var_6,
10, family="gaussian")
# View the results table
print(nmodel)
# Fitting logistic Regression Model
bmodel <- drglm::big.drglm(da,
formula = factor(Var_3) ~ Var_1+ Var_2+ factor(Var_4)+ factor(Var_5)+ Var_6,
10, family="binomial")
# View the results table
print(bmodel)
# Fitting Poisson Regression Model
pmodel <- drglm::big.drglm(da,
formula = Var_5 ~ Var_1+ Var_2+ factor(Var_3)+ factor(Var_4)+ Var_6,
10, family="poisson")
# View the results table
print(pmodel)
Run the code above in your browser using DataLab