set.seed(123)
#Number of rows to be generated
n <- 10000
#creating dataset
dataset <- data.frame( pred_1 = round(rnorm(n, mean = 50, sd = 10)),
pred_2 = round(rnorm(n, mean = 7.5, sd = 2.1)),
pred_3 = as.factor(sample(c("0", "1"), n, replace = TRUE)),
pred_4 = as.factor(sample(c("0", "1", "2"), n, replace = TRUE)),
pred_5 = as.factor(sample(0:15, n, replace = TRUE)),
pred_6 = round(rnorm(n, mean = 60, sd = 5)))
#fitting MLRM
nmodel= drglm::drglm(pred_1 ~ pred_2+ pred_3+ pred_4+ pred_5+ pred_6,
data=dataset, family="gaussian", fitfunction="speedglm", k=10)
#Output
nmodel
#fitting simple logistic regression model
bmodel=drglm::drglm(pred_3~ pred_1+ pred_2+ pred_4+ pred_5+ pred_6,
data=dataset, family="binomial", fitfunction="speedglm", k=10)
#Output
bmodel
#fitting poisson regression model
pmodel=drglm::drglm(pred_5~ pred_1+ pred_2+ pred_3+ pred_4+ pred_6,
data=dataset, family="binomial", fitfunction="speedglm", k=10)
#Output
pmodel
#fitting multinomial logistic regression model
mmodel=drglm::drglm(pred_4~ pred_1+ pred_2+ pred_3+ pred_5+ pred_6,
data=dataset, family="multinomial", fitfunction="multinom", k=10)
#Output
mmodel
Run the code above in your browser using DataLab