Learn R Programming

drifter (version 0.2.1)

print.model_drift: Print Model Drift Data Frame

Description

Print Model Drift Data Frame

Usage

# S3 method for model_drift
print(x, max_length = 25, ...)

Arguments

beast2_path

name of either a BEAST2 binary file (usually simply beast) or a BEAST2 jar file (usually has a .jar extension). Use get_default_beast2_bin_path to get the default BEAST binary file's path Use get_default_beast2_jar_path to get the default BEAST jar file's path

x

an object of the class `model_drift`

max_length

length of the first column, by default 25

...

other arguments, currently ignored

Value

this function prints a data frame with a nicer format

Examples

Run this code
# NOT RUN {
 library("DALEX")
 model_old <- lm(m2.price ~ ., data = apartments)
 model_new <- lm(m2.price ~ ., data = apartments_test[1:1000,])
 calculate_model_drift(model_old, model_new,
                  apartments_test[1:1000,],
                  apartments_test[1:1000,]$m2.price)
 
# }
# NOT RUN {
 library("ranger")
 predict_function <- function(m,x,...) predict(m, x, ...)$predictions
 model_old <- ranger(m2.price ~ ., data = apartments)
 model_new <- ranger(m2.price ~ ., data = apartments_test)
 calculate_model_drift(model_old, model_new,
                  apartments_test,
                  apartments_test$m2.price,
                  predict_function = predict_function)

 # here we compare model created on male data
 # with model applied to female data
 # there is interaction with age, and it is detected here
 predict_function <- function(m,x,...) predict(m, x, ..., probability=TRUE)$predictions[,1]
 data_old = HR[HR$gender == "male", -1]
 data_new = HR[HR$gender == "female", -1]
 model_old <- ranger(status ~ ., data = data_old, probability=TRUE)
 model_new <- ranger(status ~ ., data = data_new, probability=TRUE)
 calculate_model_drift(model_old, model_new,
                  HR_test,
                  HR_test$status == "fired",
                  predict_function = predict_function)

 # plot it
 library("ingredients")
 prof_old <- partial_dependency(model_old,
                                     data = data_new[1:1000,],
                                     label = "model_old",
                                     predict_function = predict_function,
                                     grid_points = 101,
                                     variable_splits = NULL)
 prof_new <- partial_dependency(model_new,
                                     data = data_new[1:1000,],
                                     label = "model_new",
                                     predict_function = predict_function,
                                     grid_points = 101,
                                     variable_splits = NULL)
 plot(prof_old, prof_new, color = "_label_")

# }
# NOT RUN {
# }

Run the code above in your browser using DataLab