# Setup.
states <- c("AA", "AC", "CC")
s <- length(states)
d <- 2
k_max <- 3
# ===========================================================================
# Defining non-parametric drifting semi-Markov models.
# ===========================================================================
# ---------------------------------------------------------------------------
# Defining distributions for Model 1 - both p and f are drifting.
# ---------------------------------------------------------------------------
# `p_dist` has dimensions of: (s, s, d + 1).
# Sums over v must be 1 for all u and i = 0, ..., d.
p_dist_1 <- matrix(c(0, 0.1, 0.9,
0.5, 0, 0.5,
0.3, 0.7, 0),
ncol = s, byrow = TRUE)
p_dist_2 <- matrix(c(0, 0.6, 0.4,
0.7, 0, 0.3,
0.6, 0.4, 0),
ncol = s, byrow = TRUE)
p_dist_3 <- matrix(c(0, 0.2, 0.8,
0.6, 0, 0.4,
0.7, 0.3, 0),
ncol = s, byrow = TRUE)
# Get `p_dist` as an array of p_dist_1, p_dist_2 and p_dist_3.
p_dist <- array(c(p_dist_1, p_dist_2, p_dist_3),
dim = c(s, s, d + 1))
# `f_dist` has dimensions of: (s, s, k_max, d + 1).
# First f distribution. Dimensions: (s, s, k_max).
# Sums over l must be 1, for every u, v and i = 0, ..., d.
f_dist_1_l_1 <- matrix(c(0, 0.2, 0.7,
0.3, 0, 0.4,
0.2, 0.8, 0),
ncol = s, byrow = TRUE)
f_dist_1_l_2 <- matrix(c(0, 0.3, 0.2,
0.2, 0, 0.5,
0.1, 0.15, 0),
ncol = s, byrow = TRUE)
f_dist_1_l_3 <- matrix(c(0, 0.5, 0.1,
0.5, 0, 0.1,
0.7, 0.05, 0),
ncol = s, byrow = TRUE)
# Get f_dist_1
f_dist_1 <- array(c(f_dist_1_l_1, f_dist_1_l_2, f_dist_1_l_3),
dim = c(s, s, k_max))
# Second f distribution. Dimensions: (s, s, k_max)
f_dist_2_l_1 <- matrix(c(0, 1/3, 0.4,
0.3, 0, 0.4,
0.2, 0.1, 0),
ncol = s, byrow = TRUE)
f_dist_2_l_2 <- matrix(c(0, 1/3, 0.4,
0.4, 0, 0.2,
0.3, 0.4, 0),
ncol = s, byrow = TRUE)
f_dist_2_l_3 <- matrix(c(0, 1/3, 0.2,
0.3, 0, 0.4,
0.5, 0.5, 0),
ncol = s, byrow = TRUE)
# Get f_dist_2
f_dist_2 <- array(c(f_dist_2_l_1, f_dist_2_l_2, f_dist_2_l_3),
dim = c(s, s, k_max))
# Third f distribution. Dimensions: (s, s, k_max)
f_dist_3_l_1 <- matrix(c(0, 0.3, 0.3,
0.3, 0, 0.5,
0.05, 0.1, 0),
ncol = s, byrow = TRUE)
f_dist_3_l_2 <- matrix(c(0, 0.2, 0.6,
0.3, 0, 0.35,
0.9, 0.2, 0),
ncol = s, byrow = TRUE)
f_dist_3_l_3 <- matrix(c(0, 0.5, 0.1,
0.4, 0, 0.15,
0.05, 0.7, 0),
ncol = s, byrow = TRUE)
# Get f_dist_3
f_dist_3 <- array(c(f_dist_3_l_1, f_dist_3_l_2, f_dist_3_l_3),
dim = c(s, s, k_max))
# Get f_dist as an array of f_dist_1, f_dist_2 and f_dist_3.
f_dist <- array(c(f_dist_1, f_dist_2, f_dist_3),
dim = c(s, s, k_max, d + 1))
# ---------------------------------------------------------------------------
# Non-Parametric object for Model 1.
# ---------------------------------------------------------------------------
obj_nonpar_model_1 <- nonparametric_dsmm(
model_size = 8000,
states = states,
initial_dist = c(0.3, 0.5, 0.2),
degree = d,
k_max = k_max,
p_dist = p_dist,
f_dist = f_dist,
p_is_drifting = TRUE,
f_is_drifting = TRUE
)
# p drifting array.
p_drift <- obj_nonpar_model_1$dist$p_drift
p_drift
# f distribution.
f_drift <- obj_nonpar_model_1$dist$f_drift
f_drift
# ---------------------------------------------------------------------------
# Defining Model 2 - p is drifting, f is not drifting.
# ---------------------------------------------------------------------------
# p_dist has the same dimensions as in Model 1: (s, s, d + 1).
p_dist_model_2 <- array(c(p_dist_1, p_dist_2, p_dist_3),
dim = c(s, s, d + 1))
# f_dist has dimensions of: (s,s,k_{max}).
f_dist_model_2 <- f_dist_2
# ---------------------------------------------------------------------------
# Non-Parametric object for Model 2.
# ---------------------------------------------------------------------------
obj_nonpar_model_2 <- nonparametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.7, 0.1, 0.2),
degree = d,
k_max = k_max,
p_dist = p_dist_model_2,
f_dist = f_dist_model_2,
p_is_drifting = TRUE,
f_is_drifting = FALSE
)
# p drifting array.
p_drift <- obj_nonpar_model_2$dist$p_drift
p_drift
# f distribution array.
f_notdrift <- obj_nonpar_model_2$dist$f_notdrift
f_notdrift
# ---------------------------------------------------------------------------
# Defining Model 3 - f is drifting, p is not drifting.
# ---------------------------------------------------------------------------
# `p_dist` has dimensions of: (s, s, d + 1).
p_dist_model_3 <- p_dist_3
# `f_dist` has the same dimensions as in Model 1: (s, s, d + 1).
f_dist_model_3 <- array(c(f_dist_1, f_dist_2, f_dist_3),
dim = c(s, s, k_max, d + 1))
# ---------------------------------------------------------------------------
# Non-Parametric object for Model 3.
# ---------------------------------------------------------------------------
obj_nonpar_model_3 <- nonparametric_dsmm(
model_size = 10000,
states = states,
initial_dist = c(0.3, 0.4, 0.3),
degree = d,
k_max = k_max,
p_dist = p_dist_model_3,
f_dist = f_dist_model_3,
p_is_drifting = FALSE,
f_is_drifting = TRUE
)
# p distribution matrix.
p_notdrift <- obj_nonpar_model_3$dist$p_notdrift
p_notdrift
# f distribution array.
f_drift <- obj_nonpar_model_3$dist$f_drift
f_drift
# ===========================================================================
# Using methods for non-parametric objects.
# ===========================================================================
kernel_parametric <- get_kernel(obj_nonpar_model_3)
str(kernel_parametric)
sim_seq_par <- simulate(obj_nonpar_model_3, nsim = 50)
str(sim_seq_par)
Run the code above in your browser using DataLab