The mlComb function calculates the combination
scores of two diagnostic tests selected among several Machine Learning
Algorithms
mlComb(
markers = NULL,
status = NULL,
event = NULL,
method = NULL,
resample = NULL,
niters = 5,
nfolds = 5,
nrepeats = 3,
preProcess = NULL,
show.plot = TRUE,
B = 25,
direction = c("auto", "<", "="">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",
"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",
"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...
)",>A list of AUC values, diagnostic statistics,
coordinates of the ROC curve for the combination score obtained using
Machine Learning Algorithms as well as the given biomarkers individually, a
comparison table for the AUC values of individual biomarkers and combination
score obtained and the fitted model.
a numeric data frame that includes two diagnostic tests
results
a factor vector that includes the actual disease
status of the patients
a character string that indicates the event in the status
to be considered as positive event
a character string specifying the method used for
combining the markers. For the available methods see availableMethods()
IMPORTANT: See https://topepo.github.io/caret/available-models.html for further information about the methods used in this function.
a character string that indicates the resampling
method used while training the model. The available methods are "boot",
"boot632", "optimism_boot", "boot_all", "cv", "repeatedcv", "LOOCV", "LGOCV",
"none", "oob", "adaptive_cv", "adaptive_boot" and "adaptive_LGOCV". for
details of these resampling methods see ?caret::trainControl
a numeric value that indicates the number of
bootstrapped resampling iterations (10, default)
a numeric value that indicates the number of folds for
cross validation based resampling methods (5, default)
a numeric value that indicates the number of repeats
for "repeatedcv" option of resampling methods (3, default)
a character string that indicates the pre-processing
options to be applied in the data before training the model. Available
pre-processing methods are: "BoxCox", "YeoJohnson", "expoTrans", "center",
"scale", "range", "knnImpute", "bagImpute", "medianImpute", "pca", "ica",
"spatialSign", "corr", "zv", "nzv", and "conditionalX". For detailed
information about the methods see ?caret::preProcess
a logical. If TRUE, a ROC curve is
plotted. Default is TRUE
a numeric value that is the number of bootstrap samples for
bagging classifiers, "bagFDA", "bagFDAGCV", "bagEarth" and "bagEarthGCV".
(25, default)
a character string determines in which direction the
comparison will be made. ">": if the predictor values for the control group
are higher than the values of the case group (controls > cases).
"<": if the predictor values for the control group are lower or equal than
the values of the case group (controls < cases).
a numeric value to determine the confidence interval
for the ROC curve(0.95, default).
a character string determines the cutoff method
for the ROC curve.
a logical string indicating whether the results
should be printed to the console.
optional arguments passed to selected classifiers.
Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz, Gokmen Zararsiz
# call data
data(laparotomy)
# define the function parameters
markers <- laparotomy[, -1]
status <- factor(laparotomy$group, levels = c("not_needed", "needed"))
event <- "needed"
model <- mlComb(
markers = markers, status = status, event = event,
method = "knn", resample = "repeatedcv", nfolds = 10, nrepeats = 5,
preProcess = c("center", "scale"), direction = "<", cutoff.method = "Youden"
)
Run the code above in your browser using DataLab