"dtiData"
-object is provided). It also implements structural adaptive smoothing of a diffusion tensor using a Riemannian metric (in case a "dtiTensor"
-object is given), although we strictly recommend to use the first variant due to methodological reasons.## S3 method for class 'dtiData':
dti.smooth(object, hmax=5, hinit=NULL, lambda=20, tau=10, rho=1,
graph=FALSE,slice=NULL, quant=.8, minfa=NULL, hsig=2.5,
lseq=NULL, method="nonlinear", rician=TRUE,
niter=5,result="Tensor")
"dtiData"
or an object of class "dtiTensor"
minfa
as corresponding quantile of FA if is.null(minfa)
lambda
"linear"
, "nonlinear"
"Tensor"
for create a dtiTensor-object and "dtiData"
for a dtiData-object containing a smoothed data cube.dtiTensor
.K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, to appear.
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31 (2009) pp. 1--24. K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
dtiData
,
readDWIdata
,
dtiTensor-methods
,
dtiIndices-methods
,
medinria
,
dtiData
,
dtiTensor
,
dtiIndices