"dtiData"
.## S3 method for class 'dtiData':
dtiTensor(object, method=c( "nonlinear", "linear", "quasi-likelihood"),
sigma = NULL, L = 1, mc.cores = setCores( , reprt = FALSE))
"dtiData"
"linear"
, or "nonlinear"
. method=="quasi-likelihood"
solves the nonlinear regression problem with the
expected value of the signal as regression function and weighting according"dtiTensor"
.K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, 203(1), 200-211 (2012).
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31(9) 1-24 (2009). K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
C.G. Koay, J.D. Carew, A.L. Alexander, P.J. Basser and M.E. Meyerand. Investigation of Anomalous Estimates of Tensor-Derived Quantities in Diffusion Tensor Imaging, Magnetic Resonance in Medicine, 2006, 55, 930-936.
dtiData
,
readDWIdata
,
dtiIndices-methods
,
medinria
,
dtiData
,
dtiTensor
dwiMixtensor