### load dual.spls library
library(dual.spls)
####one predictors matrix
### parameters
n <- 100
p <- 50
nondes <- 20
sigmaondes <- 0.5
data1=d.spls.simulate(n=n,p=p,nondes=nondes,sigmaondes=sigmaondes)
Xa <- data1$X
ya <- data1$y
###plotting the data
plot(Xa[1,],type='l',ylim=c(0,max(Xa)),main='Data', ylab='Xa',col=1)
for (i in 2:n){ lines(Xa[i,],col=i) }
####two predictors matrix
### parameters
n <- 100
p <- c(50,100)
nondes <- c(20,30)
sigmaondes <- c(0.05,0.02)
data2=d.spls.simulate(n=n,p=p,nondes=nondes,sigmaondes=sigmaondes)
Xb <- data2$X
X1 <- Xb[,(1:p[1])]
X2 <- Xb[,(p[1]+1):(p[1]+p[2])]
yb <- data2$y
###plotting the data
plot(Xb[1,],type='l',ylim=c(0,max(Xb)),main='Data', ylab='Xb',col=1)
for (i in 2:n){ lines(Xb[i,],col=i) }
###plotting the data
plot(X1[1,],type='l',ylim=c(0,max(X1)),main='Data X1', ylab='X1',col=1)
for (i in 2:n){ lines(X1[i,],col=i) }
###plotting the data
plot(X2[1,],type='l',ylim=c(0,max(X2)),main='Data X2', ylab='X2',col=1)
for (i in 2:n){ lines(X2[i,],col=i) }
Run the code above in your browser using DataLab