Learn R Programming

dualScale (version 0.9.1)

summary.ds: Summarizing Dual Scaling Analysis

Description

This generic function is used to produce results of several aaplications of dsFC and dsMC.

Usage

"summary"(object,...)

Arguments

object
Dual scaling object from dsMC or dsFC.
...
Arguments to be passed to methods

Value

For Ordinary Dual Scaling (dsMC)
IniDat
Initial Data
ItONa
Item options labels
N.Comp
Total number of Components
N.Item
Total number of items
N.Op
Number of options of each item
N.Ss
Total number of subjects
SubNa
Subject labels
Tot.Op
Total number of options
Inf_O
Distribution of information over components
ItemStat_O
Item statistics
Out_O
Results obtained
Rij_O
Inter item correlation
Norm.Op_O
Normed option weights
Norm.Su_O
Normed subjects scores
Proj.Op_O
Projected option weights
Proj.Su_O
Projected subjects scores
For Force Classification Dual Scaling (dsFC). (NOTE: '_B' and '_C' values also available).
IniDat
Initial data
CramerV
Cramer's coefficient V
CritItem
The criterion item for forced classification
ItONa
Item options labels
Match
Match-missmatch tables
N.Comp
Total number of components
N.Item
Total number of items
NSs
Total number of subjects
NOpt
Number of options of each item
Predict
Petcentage of correct classification
SubNa
Subject labels
Tot.Op
Total number of options
Inf_A
Distribution of information over components
ItemStat_A
Item statistics
Out_A
Results obtained by forced classification in the criterion subspace
Rij_A
Inter item correlation
Norm.Op_A
Normed option weights
Norm.Su_A
Normed subject scores
Proj.Op_A
Projected option weights
Proj.Su_A
Projected subject scores
Out_B
Results obtained by ignoring the criterion item
Out_C
Results obtained in subspace complimentary to the criterion item

Details

Available results available from different applications.

References

Nishisato S (2007). Multidimensional Nonlinear Descriptive Analysis. Chapman & Hall/CRC.

See Also

dsFC, dsMC, print.ds, plot.ds

Examples

Run this code
  data(singapore)
	ole<-dsMC(singapore)
	summary(ole)
	ole$IniDa

Run the code above in your browser using DataLab