# Examples for "dynWEV" model (equivalent applicable for
# all other models (with different parameters!))
# 1. Define some parameter set in a data.frame
paramDf <- data.frame(a=1.5,v1=0.2, v2=1, t0=0.1,z=0.52,
sz=0.3,sv=0.4, st0=0, tau=3, w=0.5,
theta1=1, svis=0.5, sigvis=0.8)
# 2. Predict discrete Choice x Confidence distribution:
preds_Conf <- predictConf(paramDf, "dynWEV", maxrt = 25, simult_conf=TRUE)
head(preds_Conf)
# 3. Compute RT density
preds_RT <- predictRT(paramDf, "dynWEV") #(scaled=FALSE)
# same output with default rt-grid and without scaled density column:
preds_RT <- predictRT(paramDf, "dynWEV", maxrt=5, subdivisions=200,
minrt=paramDf$tau+paramDf$t0, simult_conf = TRUE,
scaled=TRUE, DistConf = preds_Conf)
head(preds_RT)
# \donttest{
# produces a warning, if scaled=TRUE and DistConf missing
preds_RT <- predictRT(paramDf, "dynWEV",
scaled=TRUE)
# }
# \donttest{
# Example of visualization
library(ggplot2)
preds_Conf$rating <- factor(preds_Conf$rating, labels=c("unsure", "sure"))
preds_RT$rating <- factor(preds_RT$rating, labels=c("unsure", "sure"))
ggplot(preds_Conf, aes(x=interaction(rating, response), y=p))+
geom_bar(stat="identity")+
facet_grid(cols=vars(stimulus), rows=vars(condition), labeller = "label_both")
ggplot(preds_RT, aes(x=rt, color=interaction(rating, response), y=densscaled))+
geom_line(stat="identity")+
facet_grid(cols=vars(stimulus), rows=vars(condition), labeller = "label_both")+
theme(legend.position = "bottom")+ ggtitle("Scaled Densities")
ggplot(aggregate(dens~rt+correct+rating+condition, preds_RT, mean),
aes(x=rt, color=rating, y=dens))+
geom_line(stat="identity")+
facet_grid(cols=vars(condition), rows=vars(correct), labeller = "label_both")+
theme(legend.position = "bottom")+ ggtitle("Non-Scaled Densities")
# }
# Use PDFtoQuantiles to get predicted RT quantiles
head(PDFtoQuantiles(preds_RT, scaled = FALSE))
Run the code above in your browser using DataLab