# First example for 2 participant and the "dynWEV" model
# (equivalent applicable for
# all other models (with different parameters!))
# 1. Define two parameter sets from different participants
paramDf <- data.frame(participant = c(1,2), model="dynWEV",
a=c(1.5, 2),v1=c(0.2,0.1), v2=c(1, 1.5),
t0=c(0.1, 0.2),z=c(0.52,0.45),
sz=c(0.0,0.3),sv=c(0.4,0.7), st0=c(0,0.01),
tau=c(2,3), w=c(0.5,0.2),
theta1=c(1,1.5), svis=c(0.5,0.1), sigvis=c(0.8, 1.2))
paramDf
# 2. Predict discrete Choice x Confidence distribution:
# model is not an extra argument but must be a column of paramDf
preds_Conf <- predictConfModels(paramDf, maxrt = 15, simult_conf=TRUE,
.progress=TRUE, parallel = FALSE)
# 3. Compute RT density
preds_RT <- predictRTModels(paramDf, maxrt=6, subdivisions=100,
scaled=TRUE, DistConf = preds_Conf,
parallel=FALSE, .progress = TRUE)
head(preds_RT)
# \donttest{
# produces a warning, if scaled=TRUE and DistConf missing
preds_RT <- predictRTModels(paramDf, scaled=TRUE)
# }
# Use PDFtoQuantiles to get predicted RT quantiles
head(PDFtoQuantiles(preds_RT, scaled = FALSE))
# Second Example: only one parameter set but for two different models
# \donttest{
paramDf1 <- data.frame(model="dynWEV", a=1.5,v1=0.2, v2=1, t0=0.1,z=0.52,
sz=0.3,sv=0.4, st0=0, tau=3, w=0.5,
theta1=1, svis=0.5, sigvis=0.8)
paramDf2 <- data.frame(model="PCRMt", a=2,b=2, v1=0.5, v2=1, t0=0.1,st0=0,
wx=0.6, wint=0.2, wrt=0.2, theta1=4)
paramDf <- dplyr::full_join(paramDf1, paramDf2)
paramDf # each model parameters sets hat its relevant parameters
predictConfModels(paramDf, parallel=FALSE, .progress=TRUE)
# }
Run the code above in your browser using DataLab