# Examples for "PCRM" model (equivalent applicable for "IRM" model)
# 1. Define some parameter set in a data.frame
paramDf <- data.frame(a=2,b=2, v1=0.5, v2=1, t0=0.1,st0=0,
wx=0.6, wint=0.2, wrt=0.2,
theta1=4)
# 2. Simulate trials for both stimulus categories and all conditions (2)
simus <- simulateRM(paramDf, n=30,model="PCRM", time_scaled=TRUE)
head(simus)
# equivalent:
simus <- simulateRM(paramDf, model="PCRMt")
# \donttest{
library(ggplot2)
simus <- simus[simus$response!=0,]
simus$rating <- factor(simus$rating, labels=c("unsure", "sure"))
ggplot(simus, aes(x=rt, group=interaction(correct, rating),
color=as.factor(correct), linetype=rating))+
geom_density(size=1.2)+
facet_grid(rows=vars(condition), labeller = "label_both")
# }
# automatically aggregate simulation distribution
# to get only accuracy x confidence rating distribution for
# all conditions
agg_simus <- simulateRM(paramDf, n = 20, model="PCRMt", agg_simus = TRUE)
head(agg_simus)
# \donttest{
agg_simus$rating <- factor(agg_simus$rating, labels=c("unsure", "sure"))
library(ggplot2)
ggplot(agg_simus, aes(x=rating, group=correct, fill=as.factor(correct), y=p))+
geom_bar(stat="identity", position="dodge")+
facet_grid(cols=vars(condition), labeller = "label_both")
# }
# \donttest{
# Compute Gamma correlation coefficients between
# confidence and other behavioral measures
# output will be a list
simu_list <- simulateRM(paramDf, model="IRMt", gamma=TRUE)
simu_list
# }
Run the code above in your browser using DataLab