# Examples for "dynWEV" model (equivalent applicable
# for "2DSD" model (with less parameters))
# 1. Define some parameter set in a data.frame
paramDf <- data.frame(a=2.5,v1=0.1, v2=1, t0=0.1,z=0.55,
sz=0.3,sv=0.8, st0=0, tau=3, w=0.1,
theta1=0.8, svis=0.5, sigvis=0.8)
# 2. Simulate trials for both stimulus categories and all conditions (2)
simus <- simulateWEV(paramDf, model="dynWEV")
head(simus)
# \donttest{
library(ggplot2)
simus <- simus[simus$response!=0,]
simus$rating <- factor(simus$rating, labels=c("unsure", "sure"))
ggplot(simus, aes(x=rt, group=interaction(correct, rating),
color=as.factor(correct), linetype=rating))+
geom_density(size=1.2)+xlim(c(0,5))+
facet_grid(rows=vars(condition), labeller = "label_both")
# }
# automatically aggregate simulation distribution
# to get only accuracy x confidence rating distribution for
# all conditions
agg_simus <- simulateWEV(paramDf, model="dynWEV", agg_simus = TRUE)
head(agg_simus)
# \donttest{
agg_simus$rating <- factor(agg_simus$rating, labels=c("unsure", "sure"))
library(ggplot2)
ggplot(agg_simus, aes(x=rating, group=correct, fill=as.factor(correct), y=p))+
geom_bar(stat="identity", position="dodge")+
facet_grid(cols=vars(condition), labeller = "label_both")
# }
# \donttest{
# Compute Gamma correlation coefficients between
# confidence and other behavioral measures
# output will be a list
simu_list <- simulateWEV(paramDf,n = 400, model="dynWEV", gamma=TRUE)
simu_list
# }
Run the code above in your browser using DataLab