Extracts the names and dimensions of all parameters used in the
dynamite model. See also get_parameter_types() and
get_parameter_names(). The returned dimensions match those of
the stanfit element of the dynamitefit object. When applied to
dynamiteformula objects, the model is compiled and sampled for 1 iteration
to get the parameter dimensions.
get_parameter_dims(x, ...)# S3 method for dynamiteformula
get_parameter_dims(x, data, time, group = NULL, ...)
# S3 method for dynamitefit
get_parameter_dims(x, ...)
A named list with all parameter dimensions of the input model.
[dynamiteformula or dynamitefit]
The model formula or an
existing dynamitefit object. See dynamiteformula() and dynamite().
Ignored.
[data.frame, tibble::tibble, or data.table::data.table]
The data that contains the variables in the model in long format.
Supported column types are integer, logical, double, and
factor. Columns of type character will be converted to factors.
Unused factor levels will be dropped. The data can contain missing
values which will simply be ignored in the estimation in a case-wise
fashion (per time-point and per channel). Input data is converted to
channel specific matrix representations via stats::model.matrix.lm().
[character(1)]
A column name of data that denotes the
time index of observations. If this variable is a factor, the integer
representation of its levels are used internally for defining the time
indexing.
[character(1)]
A column name of data that denotes the
unique groups or NULL corresponding to a scenario without any groups.
If group is NULL, a new column .group is created with constant
value 1L is created indicating that all observations belong to the same
group. In case of name conflicts with data, see the group_var element
of the return object to get the column name of the new variable.
Model outputs
as.data.frame.dynamitefit(),
as.data.table.dynamitefit(),
as_draws_df.dynamitefit(),
coef.dynamitefit(),
confint.dynamitefit(),
dynamite(),
get_code(),
get_data(),
get_parameter_names(),
get_parameter_types(),
ndraws.dynamitefit(),
nobs.dynamitefit()
data.table::setDTthreads(1) # For CRAN
get_parameter_dims(multichannel_example_fit)
Run the code above in your browser using DataLab