Extracts either time-varying or time-invariant parameters of the model.
# S3 method for dynamitefit
coef(
object,
types = c("alpha", "beta", "delta"),
parameters = NULL,
responses = NULL,
times = NULL,
groups = NULL,
summary = TRUE,
probs = c(0.05, 0.95),
...
)
A tibble
containing either samples or summary statistics of the
model parameters in a long format.
[dynamitefit
]
The model fit object.
[character()
]
Type(s) of the parameters for which the
samples should be extracted. See details of possible values. Default is
all values listed in details except spline coefficients omega
.
This argument is mutually exclusive with parameters
.
[character()
]
Parameter(s) for which the samples
should be extracted. Possible options can be found with function
get_parameter_names()
. Default is all parameters of specific type for
all responses. This argument is mutually exclusive with types
.
[character()
]
Response(s) for which the samples
should be extracted. Possible options are elements of
unique(x$priors$response)
, and the default is this entire vector.
Ignored if the argument parameters
is supplied.
omega_alpha
, and omega_psi
. See also get_parameter_types()
.
[double()
]
Time point(s) to keep. If NULL
(the default), all time points are kept.
[character()
]
Group name(s) to keep. If NULL
(the default), all groups are kept.
[logical(1)
]
If TRUE
(default), returns posterior
mean, standard deviation, and posterior quantiles (as defined by the
probs
argument) for all parameters. If FALSE
, returns the
posterior samples instead.
[numeric()
]
Quantiles of interest. Default is
c(0.05, 0.95)
.
Ignored.
Model outputs
as.data.frame.dynamitefit()
,
as.data.table.dynamitefit()
,
as_draws_df.dynamitefit()
,
confint.dynamitefit()
,
dynamite()
,
get_code()
,
get_data()
,
get_parameter_dims()
,
get_parameter_names()
,
get_parameter_types()
,
ndraws.dynamitefit()
,
nobs.dynamitefit()
data.table::setDTthreads(1) # For CRAN
betas <- coef(gaussian_example_fit, type = "beta")
deltas <- coef(gaussian_example_fit, type = "delta")
Run the code above in your browser using DataLab