Convenience tuning wrapper functions, using tune.
tune.svm(x, y = NULL, data = NULL, degree = NULL, gamma = NULL, coef0 = NULL,
         cost = NULL, nu = NULL, class.weights = NULL, epsilon = NULL, ...)
best.svm(x, tunecontrol = tune.control(), ...)
 
tune.nnet(x, y = NULL, data = NULL, size = NULL, decay = NULL,
          trace = FALSE, tunecontrol = tune.control(nrepeat = 5), 
          ...)
best.nnet(x, tunecontrol = tune.control(nrepeat = 5), ...)tune.rpart(formula, data, na.action = na.omit, minsplit = NULL,
           minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL,
           usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth =
           NULL, predict.func = NULL, ...)
best.rpart(formula, tunecontrol = tune.control(), ...)
tune.randomForest(x, y = NULL, data = NULL, nodesize = NULL, 
                  mtry = NULL, ntree = NULL, ...)
best.randomForest(x, tunecontrol = tune.control(), ...)
tune.knn(x, y, k = NULL, l = NULL, ...)
formula and data arguments of function to be tuned.
predicting function.
function handling missingness.
rpart parameters.
svm
    parameters.
knn parameters.
randomForest parameters.
parameters passed to
    nnet.
object of class "tune.control" containing
    tuning parameters.
Further parameters passed to tune.
tune.foo() returns a tuning object including the best parameter set obtained
  by optimizing over the specified parameter vectors. best.foo()
  directly returns the best model, i.e. the fit of a new model using the
  optimal parameters found by tune.foo.
For examples, see the help page of tune().