```
# NOT RUN {
data(iris)
attach(iris)
## classification mode
# default with factor response:
model <- svm(Species ~ ., data = iris)
# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- Species
model <- svm(x, y)
print(model)
summary(model)
# test with train data
pred <- predict(model, x)
# (same as:)
pred <- fitted(model)
# Check accuracy:
table(pred, y)
# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)
attr(pred, "decision.values")[1:4,]
# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(iris[,-5])),
col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])
## try regression mode on two dimensions
# create data
x <- seq(0.1, 5, by = 0.05)
y <- log(x) + rnorm(x, sd = 0.2)
# estimate model and predict input values
m <- svm(x, y)
new <- predict(m, x)
# visualize
plot(x, y)
points(x, log(x), col = 2)
points(x, new, col = 4)
## density-estimation
# create 2-dim. normal with rho=0:
X <- data.frame(a = rnorm(1000), b = rnorm(1000))
attach(X)
# traditional way:
m <- svm(X, gamma = 0.1)
# formula interface:
m <- svm(~., data = X, gamma = 0.1)
# or:
m <- svm(~ a + b, gamma = 0.1)
# test:
newdata <- data.frame(a = c(0, 4), b = c(0, 4))
predict (m, newdata)
# visualize:
plot(X, col = 1:1000 %in% m$index + 1, xlim = c(-5,5), ylim=c(-5,5))
points(newdata, pch = "+", col = 2, cex = 5)
## weights: (example not particularly sensible)
i2 <- iris
levels(i2$Species)[3] <- "versicolor"
summary(i2$Species)
wts <- 100 / table(i2$Species)
wts
m <- svm(Species ~ ., data = i2, class.weights = wts)
## extract coefficients for linear kernel
# a. regression
x <- 1:100
y <- x + rnorm(100)
m <- svm(y ~ x, scale = FALSE, kernel = "linear")
coef(m)
plot(y ~ x)
abline(m, col = "red")
# b. classification
# transform iris data to binary problem, and scale data
setosa <- as.factor(iris$Species == "setosa")
iris2 = scale(iris[,-5])
# fit binary C-classification model
m <- svm(setosa ~ Petal.Width + Petal.Length,
data = iris2, kernel = "linear")
# plot data and separating hyperplane
plot(Petal.Length ~ Petal.Width, data = iris2, col = setosa)
(cf <- coef(m))
abline(-cf[1]/cf[3], -cf[2]/cf[3], col = "red")
# plot margin and mark support vectors
abline(-(cf[1] + 1)/cf[3], -cf[2]/cf[3], col = "blue")
abline(-(cf[1] - 1)/cf[3], -cf[2]/cf[3], col = "blue")
points(m$SV, pch = 5, cex = 2)
# }
```

Run the code above in your browser using DataCamp Workspace