data(wigger)
data(dataC)
data(dataRead)
# reduce number of iterations for illustrative purposes
# (use default mcmc.settings to ensure convergence)
settings.short <- list(iterations = 1e3, thin = 10)
set.seed(1)
out <- run_eDITH_BT(dataC, wigger, mcmc.settings = settings.short)
# \donttest{
library(rivnet)
# best-fit (maximum a posteriori) map of eDNA production rates
plot(wigger, out$p_map)
# best-fit map (maximum a posteriori) of detection probability
plot(wigger, out$probDet_map)
# compare best-fit vs observed eDNA concentrations
plot(out$C_map[dataC$ID], dataC$values,
xlab="Modelled (MAP) concentrations", ylab="Observed concentrations")
abline(a=0, b=1)
## fit eDNA read number data - use AEMs as covariates
out <- run_eDITH_BT(dataRead, wigger, ll.type = "nbinom",
par.AEM = list(weight = "gravity"),
mcmc.settings = settings.short) # use default mcmc.settings to ensure convergence
## use user-defined covariates
covariates <- data.frame(urban = wigger$SC$locCov$landcover_1,
agriculture = wigger$SC$locCov$landcover_2,
forest = wigger$SC$locCov$landcover_3,
elev = wigger$AG$Z,
log_drainageArea = log(wigger$AG$A))
out.cov <- run_eDITH_BT(dataC, wigger, covariates,
mcmc.settings = settings.short) # use default mcmc.settings to ensure convergence
# use user-defined covariates and AEMs
out.covAEM <- run_eDITH_BT(dataC, wigger, covariates,
use.AEM = TRUE, par.AEM = list(weight = "gravity"),
mcmc.settings = settings.short) # use default mcmc.settings to ensure convergence
# use AEMs with significantly positive spatial autocorrelation
out.AEM.moran <- run_eDITH_BT(dataC, wigger, use.AEM = TRUE,
par.AEM = list(weight = "gravity", moranI = TRUE),
mcmc.settings = settings.short) # use default mcmc.settings to ensure convergence
## use posterior sample to specify user-defined prior
library(BayesianTools)
data(outSample)
pp <- createPriorDensity(outSample$outMCMC)
# Important! add parameter names to objects lower, upper
names(pp$lower) <- names(pp$upper) <- colnames(outSample$outMCMC$chain[[1]])[1:8]
# the three last columns are for log-posterior, log-likelihood, log-prior
out.new <- run_eDITH_BT(dataC, wigger, covariates, prior = pp,
mcmc.settings = settings.short)
# }
Run the code above in your browser using DataLab