library(rivnet)
data(wigger)
# calculate AEMs and use the first 10 as covariates
ae <- river_to_AEM(wigger)
covariates <- data.frame(ae$vectors[,1:10])
names(covariates) <- paste0("AEM",1:10)
# covariates names must correspond to param names
set.seed(1); param <- c(3,-15, runif(10,-1,1))
names(param) <- c("tau", "log_p0", paste0("beta_AEM",1:10))
# param names must correspond to covariates names
out <- run_eDITH_single(param, wigger, covariates)
# add parameter sigma and compute detection probability
param <- c(param, 5e-12)
names(param)[length(param)] <- "sigma"
# note that the value of sigma has to be within the range indicated by sigma.prior
out2 <- run_eDITH_single(param, wigger, covariates, ll.type="norm")
# include data and compute logprior, loglikelihood, logposterior
data(dataC)
out3 <- run_eDITH_single(param, wigger, covariates,
ll.type="norm", data=dataC)
Run the code above in your browser using DataLab