# \donttest{
# Ex. 1: Calculating mu_critical with site-level covariates
# Load data
data(goby_data)
# Fit a model including 'Filter_time' and 'Salinity' site-level covariates
fit_cov <- joint_model(data = goby_data, cov = c('Filter_time','Salinity'),
family = "poisson", p10_priors = c(1,20), q = FALSE,
multicore = FALSE)
# Calculate mu_critical at the mean covariate values (covariates are
# standardized, so mean = 0)
mu_critical(fit_cov$model, cov_val = c(0,0), ci = 0.9)
# Calculate mu_critical at habitat size 0.5 z-scores greater than the mean
mu_critical(fit_cov$model, cov_val = c(0,0.5), ci = 0.9)
# Ex. 2: Calculating mu_critical with multiple traditional gear types
# Load data
data(green_crab_data)
# Fit a model with no site-level covariates
fit_q <- joint_model(data = green_crab_data, cov = NULL, family = "negbin",
p10_priors = c(1,20), q = TRUE, multicore = FALSE)
# Calculate mu_critical
mu_critical(fit_q$model, cov_val = NULL, ci = 0.9)
# }
Run the code above in your browser using DataLab