# general example
data(example_data)
res <- assess_quality(example_data, patient_id)
# example of internal consistency checks on more simple dataset
# describing bean counts
require(tibble)
# creating `data`:
beans <- tibble::tibble(red_beans = 1:15,
blue_beans = 1:15,
total_beans = 1:15*2,
red_bean_summary = c(rep("few_beans",9), rep("many_beans",6)))
# creating `consis_tbl`
bean_rules <- tibble::tribble(~varA, ~varB, ~lgl_test, ~varA_boundaries, ~varB_boundaries,
"red_beans", "blue_beans", "==", NA, NA,
"red_beans", "total_beans", "<=", NA,NA,
"red_beans", "red_bean_summary", NA, "1:9", "few_beans",
"red_beans", "red_bean_summary", NA, "10:15", "many_beans")
# add some inconsistencies
beans[1, "red_bean_summary"] <- "many_beans"
beans[1, "red_beans"] <- 10
res <- assess_quality(beans, consis_tbl = bean_rules)
# variable completeness table
res$completeness$variable_completeness
# row completeness table
res$completeness$row_completeness
# show completeness of rows and variables as a bar plot
res$completeness$completeness_plot
# show dataset completeness in a clustered heatmap
res$completeness$plot_completeness_heatmap(res$completeness)
# show any internal inconsistencies
res$internal_inconsistency
# show any variables with zero entropy
res$vars_with_zero_entropy
Run the code above in your browser using DataLab