## S3 method for class 'default':
HOF(occ, grad, M = max(occ), y.name, family = binomial, lim = 100,
bootstrap = 100, test = c('AICc', 'BIC', 'AIC','Dev'), ...)
## S3 method for class 'data.frame':
HOF(veg, grad, M, freq.limit = 10, ...)
## S3 method for class 'HOF':
pick.model(object, level = 0.95, test = c("AICc", "BIC", "AIC", "Dev"),
modeltypes, penal = 'df', gam = FALSE, selectMethod = c('bootselect','IC.weight','raw'),
quiet = FALSE, ...)
## S3 method for class 'HOF':
fitted(object, model, ...)
## S3 method for class 'HOF':
predict(object, model, newdata, ...)HOF.fit returns an object of class "HOF" which contains the parameters of the call,
the fitting results for every model type and a vector of chosen model types from bootstrapping.lim=Inf will produce results similar to gravy.
Function pick.model finds the most adequate modeltype according to the chosen Information Criterion (AICc is default).
Function fitted returns the fitted values for the used gradient, and predict for any values in newdata.
To improve and check model stability a bootstrapping mechanism is implemented in function HOF. If the initially chosen model type is different from the most frequent one, the latter will be chosen by default.Oksanen, J. & Minchin, P.R. (2002). Continuum theory revisited: what shape are species responses along ecological gradients? Ecological Modelling 157, 119-129.
Huisman, J., Olff, H. & Fresco, L.F.M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science 4, 37-46.
plot.HOF provides advanced plotting schemes for HOF models.
Para derives model parameters like optimum, niche (width), slope etc.data(acre)
sel <- c('MATRREC', 'RUMEACT', 'SILENOC', 'APHAARV', 'MYOSARV', 'DESUSOP', 'ARTE#VU')
mo <- HOF(acre[,match(sel, names(acre))], acre.env$PH_KCL, M=1, bootstrap=NULL)
moRun the code above in your browser using DataLab